Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors

نویسندگان

  • Kole T. Roybal
  • Jasper Z. Williams
  • Leonardo Morsut
  • Levi J. Rupp
  • Isabel Kolinko
  • Joseph H. Choe
  • Whitney J. Walker
  • Krista A. McNally
  • Wendell A. Lim
چکیده

Redirecting T cells to attack cancer using engineered chimeric receptors provides powerful new therapeutic capabilities. However, the effectiveness of therapeutic T cells is constrained by the endogenous T cell response: certain facets of natural response programs can be toxic, whereas other responses, such as the ability to overcome tumor immunosuppression, are absent. Thus, the efficacy and safety of therapeutic cells could be improved if we could custom sculpt immune cell responses. Synthetic Notch (synNotch) receptors induce transcriptional activation in response to recognition of user-specified antigens. We show that synNotch receptors can be used to sculpt custom response programs in primary T cells: they can drive a la carte cytokine secretion profiles, biased T cell differentiation, and local delivery of non-native therapeutic payloads, such as antibodies, in response to antigen. SynNotch T cells can thus be used as a general platform to recognize and remodel local microenvironments associated with diverse diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors

The Notch protein is one of the most mechanistically direct transmembrane receptors-the intracellular domain contains a transcriptional regulator that is released from the membrane when engagement of the cognate extracellular ligand induces intramembrane proteolysis. We find that chimeric forms of Notch, in which both the extracellular sensor module and the intracellular transcriptional module ...

متن کامل

Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors

production of TNF-related apoptosis-inducing ligand (TRAIL), an inducer of apoptosis and a cancer therapeutic (Figure 4B) (Johnstone et al., 2008; Lemke et al., 2014). T cells normally do not produce TRAIL upon TCR stimulation, therefore, if synthetically expressed in a controlledmanner, this could aid in their cytotoxic activity (Figure S4A). Soluble forms of TRAIL are effective at killing the...

متن کامل

A Receptor for All Occasions

Cells communicate with their environment, in part, through cell surface receptors. Engineering receptors that both sense arbitrary inputs and provide outputs orthogonal to endogenous signaling pathways has been a challenge. Now, Lim and colleagues report a system based on synthetic Notch receptors that allows independent control of both inputs and outputs in diverse cell types.

متن کامل

Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits

T cells can be re-directed to kill cancer cells using chimeric antigen receptors (CARs) or T cell receptors (TCRs). This approach, however, is constrained by the rarity of tumor-specific single antigens. Targeting antigens also found on bystander tissues can cause life-threatening adverse effects. A powerful way to enhance ON-target activity of therapeutic T cells is to engineer them to require...

متن کامل

Rescue of notch-1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer.

An impaired antitumor immunity is found in patients with cancer and represents a major obstacle in the successful development of different forms of immunotherapy. Signaling through Notch receptors regulates the differentiation and function of many cell types, including immune cells. However, the effect of Notch in CD8(+) T-cell responses in tumors remains unclear. Thus, we aimed to determine th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 167  شماره 

صفحات  -

تاریخ انتشار 2016